Étude d'endomorphismes nilpotents.

Dans tout le problème, n est un entier naturel non nul et $M_n(\mathbb{C})$ désigne l'espace vectoriel normé des matrices carrées d'ordre n à coefficients complexes.

 $GL_n(\mathbb{C})$ est le groupe des matrices inversibles de $M_n(\mathbb{C})$.

La matrice unité de cet espace sera noéte I_n et la matrice nulle O_n .

L'espace $E = \mathbb{C}^n$ est rapporté à une base $(e_j)_{1 \leq j \leq n}$ et on rappelle que toute matrice carrée d'ordre n représente dans cette base un endomorphisme de E appelé endomorphisme associé.

Si v est un endomorphisme de E, on rappelle que :

- $-v^0$ est l'endomorphisme unité,
- $\ \forall m \in \mathbb{N}, \ v^{m+1} = v \circ v^m.$

L'endomorphisme v sera dit **nilpotent** s'il existe un entier $r \in \mathbb{N}$ tel que $v^r = \theta$ (endomorphisme nul de E).

Pour $\lambda \in \mathbb{C}^*$, on note $J(\lambda)$ la matrice carrée d'ordre n définie par

$$J(\lambda) = (u_{i,j}) \text{ avec } \begin{cases} \forall i \in \{1, \dots, n-1\}, \ u_{i+1,i} = 1 \\ \forall i \in \{1, \dots, n\}, \ u_{i,i} = \lambda \\ u_{i,j} = 0 \text{ sinon} \end{cases}$$

Pour tout nombre complexe z = x + iy, $(x, y) \in \mathbb{R}^2$, on rappelle que

$$e^z = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

Pour $M \in M_n(\mathbb{C})$, soit $\alpha(M)$ la matrice :

$$\alpha(M) = \lim_{m \to +\infty} S_m \text{ avec } S_m = \sum_{k=0}^m \frac{M^k}{k!}$$

On rappelle que pour calculer cette limite, il suffit de calculer la limite de chacun des termes de la matrice S_m . On admettra et on utilisera sans le démontrer que cette matrice existe toujours et que si A et B sont deux matrices de $M_n(\mathbb{C})$ qui commutent, alors $\alpha(A+B) = \alpha(A)\alpha(B)$.

1 Quelques calculs préliminaire.

- 1. Soit $A = \begin{pmatrix} 2 & -3 & 3 \\ -3 & 3 & -4 \\ -3 & 4 & -5 \end{pmatrix} \in M_3(\mathbb{C})$. Déterminer les éléments propres de la matrice A.
- **2.** Vérifier que $\ker(A+I_3)^2 \oplus \ker(A-2I_3) = \mathbb{C}^3$
- **3.** En déduire que la matrice A est semblable à la matrice $\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

2 Quelques propriétés de la matrice J(0).

- 1. Déterminer le rang de J(0).
- 2.
 - **2.1.** Déterminer $J(0)^k$ pour $k \in \mathbb{N}$, $k \le n-1$, puis pour $k \in \mathbb{N}$, $k \ge n$.
 - **2.2.** Vérifier que toutes les puissances de J(0) sont des matrices nilpotentes.
- **3.** Déterminer $\alpha(J(0))$ puis $U = \alpha(J(0)) I_n$.
- 4. Montrer que toute combinaison linéaire de deux matrices nilpotentes qui commutent est encore une matrice nilpotente.
- **5.** Montrer que U est une matrice nilpotente de rang n-1.

3 Quelques résultats sur les noyaux itérés d'un endomorphisme.

Soit u un endomorphisme de E.

- **1.** Prouver que $\forall (i,j) \in \mathbb{N}^2$, $\ker(u^i) \subset \ker(u^{i+j})$.
- **2.** Pour tout $m \in \mathbb{N}$, on note $t_m = \dim(\ker(u^m))$. Prouver l'existence de

$$r = \inf\{m \in \mathbb{N}, \ t_m = t_{m+1}\}\$$

- 3. Montrer que:
 - (i) $\forall m < r$, $\ker(u^m)$ est strictement inclus dans $\ker(u^{m+1})$,
 - (ii) $\ker(u^r) = \ker(u^{r+1}),$
 - (iii) $\forall m \ge r$, $\ker(u^m) = \ker(u^{m+1})$.

4 Recherche des endomorphismes nilpotents de rang n-1.

Soit V une matrice de $M_n(\mathbb{C})$, de rang n-1 et vérifiant $V^n=O_n$. On note v l'endomorphisme de E associé à V.

- 1. Soient p et q deux entiers naturels et w la restriction de v^q à $\text{Im}(v^p)$.
 - **1.1.** Déterminer Im(w).
 - **1.2.** Prouver que $\ker(w) \subset \ker(v^q)$.
 - 1.3. Vérifier alors que l'on a

$$\dim(\ker(v^{p+q})) \le \dim(\ker(v^p)) + \dim(\ker(v^q))$$

1.4. En déduire

$$\forall i \in \{1, \dots, n\}, \ \dim(\ker(v^i)) \le i$$

- **1.5.** Démontrer qu'en fait $\forall i \in \{1, ..., n\}, \dim(\ker(v^i)) = i$.
- **2.** Prouver alors que $v^{n-1} \neq \theta$.
- **3.** En déduire qu'il existe un vecteur e de E tel que

$$B_1 = (e, v(e), v^2(e), \dots, v^{n-1}(e))$$

soit une base de E.

- 4. Ecrire la matrice de v dans cette base. Interpréter le résultat obtenu à l'aide des matrices $J(\lambda)$.
- 5. Déterminer alors tous les endomorphismes nilpotents de rang n-1 et montrer que les matrices de deux tels endomorphismes sont semblables.

5 Résolution de l'équation $J(\mu) = \alpha(X)$, d'inconnue $X \in M_n(\mathbb{C})$.

1. Montrer que : $\forall M \in M_n(\mathbb{C}), \forall P \in GL_n(\mathbb{C}),$

$$P^{-1}\alpha(M)P = \alpha(P^{-1}MP)$$

2. Résoudre dans $\mathbb C$ les équations :

$$e^z = i$$
, $e^z = -1$, $e^z = -3 - 4i$

- **3.** Plus généralement, soit $\mu \in \mathbb{C}$. Déterminer, lorsque cela est possible, tous les nombres complexes $z = x + iy \in \mathbb{C}$ tels que $e^z = \mu$.
- **4.** On prend alors $\mu \neq 0$ et on note s un des nombres complexes tel que $e^s = \mu$.
 - **4.1.** Déterminer $\alpha(sI_n)$.
 - **4.2.** On écrit alors J(s) sous la forme : $J(s) = sI_n + J(0)$. Exprimer $\alpha(J(s))$ à l'aide de $\alpha(J(0))$ et de μ .
 - **4.3.** Vérifier que la matrice $\mu(\alpha(J(0)) I_n)$ est nilpotente de rang n-1.
 - **4.4.** En déduire qu'il existe une matrice inversible $Q \in GL_n(\mathbb{C})$ telle que :

$$Q^{-1}\alpha(J(s))Q = J(\mu)$$

- **5.** Donner alors dans $M_n(\mathbb{C})$ une solution à l'équation proposée $\alpha(X) = J(\mu)$.
- **6.** En déduire dans $M_n(\mathbb{C})$ une solution à l'équation $\alpha(X) = {}^t J(\mu)$.
- **7.** Applications.
 - 7.1. On considère la matrice $T=\begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix} \in M_2(\mathbb{C})$. Déterminer une matrice X_1 telle que $\alpha(X_1)=T$.
 - **7.2.** On va chercher une matrice $X_2 \in M_3(\mathbb{C})$ telle que $\alpha(X_2) = A$ où A désigne la matrice de $M_3(\mathbb{C})$ définie à la partie 1.
 - **7.2.1** Déterminer une matrice $B_1 \in M_2(\mathbb{C})$ telle que $\alpha(B_1) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$.
 - **7.2.2** Soit $H = \begin{pmatrix} B_1 & 0 \\ 0 & \ln(2) \end{pmatrix} \in M_3(\mathbb{C})$. Calculer $\alpha(H)$.
 - **7.2.3** Déterminer alors une matrice $X_2 \in M_3(\mathbb{C})$ telle que $\alpha(X_2) = A$