EMLYON 2006 ET COMPLÉMENTS

Dans ce devoir, on traite un problème donné à l'EM en 2006 puis deux applications classiques (parties II & III) qui ne figuraient pas dans le sujet initial.

Soit n un entier supérieur ou égal à 2. On désigne par I_n , la matrice unité de $\mathcal{M}_n(\mathbb{C})$. On considère un n-uplet $(a_0, a_1, \ldots, a_{n-1})$ de \mathbb{C}^n et le polynôme :

$$P = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$

On note C la matrice de $\mathcal{M}_n(\mathbb{C})$ définie par

$$C_{P} = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_{0} \\ 1 & \ddots & (0) & \vdots & -a_{1} \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & (0) & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

On dit que C est la matrice compagnon du polynôme P.

On note $\mathcal{B}_0 = (e_1, \dots, e_n)$ la base canonique de \mathbb{C}^n .

On note id l'application identité de \mathbb{C}^n et on appelle f l'endomorphisme de \mathbb{C}^n tel que \mathbb{C} soit la matrice associée à f relativement à la base \mathcal{B}_0 .

On note $f^0 = id$ et, pour tout entier naturel k, $f^{k+1} = f^k \circ f$.

Partie I. Le problème EM-Lyon 2006

- **1.** a) Exprimer, pour tout $i \in [1; n-1]$, $f(e_i)$ en fonction de e_{i+1} .
 - **b)** En déduire : $\forall j \in [1; n-1]$, $f^j(e_1) = e_{j+1}$ et $f^n(e_1) = -(a_0e_1 + a_1e_2 + \cdots + a_{n-1}e_n)$.
- **2.** Soit g l'endomorphisme de \mathbb{C}^n défini par $g = f^n + a_{n-1}f^{n-1} + \cdots + a_1f + a_0id$.
 - a) Vérifier : $g(e_1) = 0$.
 - **b)** Montrer: $\forall i \in \mathbb{N}, g \circ f^i = f^i \circ g.$
 - c) En déduire : $\forall i \in [[1; n]], g(e_i) = 0.$
 - d) Montrer que le polynôme P est annulateur de l'endomorphisme f. Application 1 : Déterminer une matrice $A \in \mathcal{M}_5(\mathbb{C})$ telle que $A^5 = A^3 + 2A^2 + I_5$.
 - e) Établir que toutes les valeurs propres de C sont des racines du polynôme P.
- 3. a) Soit $Q = \alpha_0 + \alpha_1 X + \cdots + a_{n-1} X^{n-1}$ un polynôme non nul et de degré inférieur ou égal à n-1.

On note Q(f) l'endomorphisme de \mathbb{C}^n défini par $Q(f)=\alpha_0id+\alpha_1f+\cdots+\alpha_{n-1}f^{n-1}$.

Calculer $Q(f)(e_1)$.

- b) En déduire qu'il n'existe pas de polynôme non nul, de degré inférieur ou égal à n-1 et annulateur de f.
- c) Soit λ une racine du polynôme P. Il existe donc un unique polynôme $R \in \mathbb{C}[X]$ tel que $P = (X \lambda)R$. Vérifier que $(f \lambda id) \circ R(f) = \tilde{0}$, où $\tilde{0}$ est l'endomorphisme nul de \mathbb{C}^n .
- d) Conclure que toutes les racines du polynôme P sont des valeurs propres de C. Ce qui est pratique dans un livre, c'est que les pages sont numérotées et ordonnées. Dans l'ensemble, ça facilite la lecture.
- **4.** a) Montrer que, pour tout nombre complexe x, la matrice $(C xI_n)$ est de rang supérieur ou égal à n-1. En déduire que chaque sous-espace propre de C est de dimension 1.
 - b) En déduire que C est diagonalisable si et seulement si P admet n racines deux à deux distinctes.
- 5. a) Application 2: Montrer que la matrice $A_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ de $\mathcal{M}_4(\mathbb{C})$ est diagonalisable.
 - **b)** Application 3: Montrer que la matrice $A_2 = \begin{pmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & -8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ de $\mathcal{M}_4(\mathbb{C})$ n'est pas diagonalisable.
 - On note B = ^tC la matrice transposée de C.
 - a) Montrer que, pour tout nombre complexe t, la matrice $(B tI_n)$ est inversible si et seulement si la matrice $(C tI_n)$ est inversible.
 - b) En déduire que les matrices B et C ont les mêmes valeurs propres.
 - c) Soit λ une valeur propre de B. Déterminer une base du sous-espace propre de B associé à λ .
 - d) On suppose que le polynôme P admet n racines $\lambda_1, \ldots, \lambda_n$ deux à deux distinctes. Montrer que B est diagonalisable et en déduire que la matrice

6.

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix}$$

est inversible.

7. Soit E un \mathbb{C} -espace vectoriel de dimension n et u un endomorphisme de E admettant n valeurs propres μ_1, \ldots, μ_n deux à deux distinctes.

L'endomorphisme u est donc diagonalisable et on note $\mathcal{E} = (e_1, \dots, e_n)$ une base de E constituée de vecteurs propres de u respectivement associés à μ_1, \ldots, μ_n .

- a) Soit $a = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n$. Montrer que la famille $\mathcal{B}_a = (a, u(a), \dots, u^{n-1}(a))$ est une base de E.
- b) Montrer qu'il existe un polynôme $P_1 = X^n + b_{n-1}X^{n-1} + \cdots + b_1X + b_0$ tel que la matrice associée à u relativement à la base $\mathcal{B}_a = (a, u(a), \dots, u^{n-1}(a))$ soit la matrice compagnon du polynôme P₁.

Partie II. Application à la localisation des racines d'un polynôme.

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$. On pose :

$$\forall i \in [[1; n]], \quad r_i = \sum_{j=1}^n |a_{i,j}|, \ \rho = \max(r_1, \dots, r_n) \text{ et } \mathcal{D} = \{z \in \mathbb{C}, |z| \leqslant \rho\}\}.$$

$$\text{Pour X} = (x_i)_{1 \leqslant i \leqslant n} \in \mathcal{M}_{n,1}(\mathbb{C}), \text{ on note } ||\mathbf{X}|| = \max_{1 \leqslant i \leqslant n} |x_i|.$$

- Soit $\lambda \in \operatorname{Sp}(A)$ et $X = (x_i)_{1 \leq i \leq n}$ un vecteur propre associé à λ . Montrer que pour tout entier i de $[1; n] : |\lambda x_i| \leq r_i ||X||$. 1.
- Démontrer que : $Sp(A) \subset \mathcal{D}$. $\mathbf{2}.$
- Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$. 3. Établir que toutes les racines de P sont dans le disque fermé de centre 0 et de rayon R = max { $|a_0|$, 1 + $|a_1|$, 1 + $|a_2|$, ..., 1 + $|a_{n-1}|$ }.
- Soit $Q = b_n X^n + b_{n-1} X^{n-1} + \cdots + b_0$ un polynôme de $\mathbb{C}[X]$ de degré n. Proposer 4. un majorant du module de ses racines.
- Application:5.

Soit a, b, c et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n:

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution sur $\mathbb{N} \setminus \{0, 1\}$.

Partie III. Applications aux suites récurrentes linéaires.

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + \ldots + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel ${\bf F}$ de ${\bf E}$ formé des éléments u vérifiant la relation :

$$\forall n \in \mathbb{N} : u(n+p) = -a_{p-1}u(n+p-1) - \dots - a_0u(n).$$

- 1. Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- 2. Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), \dots, u(p-1))$, montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de
- 3. Pour tout entier $0 \le i \le p-1$ on définit les élements e_i de F par :

$$e_i(i) = 1$$
 et, lorsque $0 \le j \le p - 1$ et $j \ne i$, $e_i(j) = 0$.

- a) Déterminer, pour tout i dans [0; p-1], $e_i(p)$.
- b) Montrer que le système de vecteurs $(e_0, e_1, ..., e_{p-1})$ est une base de F.
- c) Soit u un élément de F, établir que $u = \sum_{i=1}^{n} u(i)e_i$.
- 4. Si u est un élément de E, on définit l'élément f(u) de E par :

$$f(u): n \mapsto u(n+1).$$

Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.

- 5. Si q est l'endomorphisme de F induit par f, montrer que la matrice de q dans la base $(e_0, e_1, ..., e_{p-1})$ est ${}^{\rm t}{\rm C_P}$.
- On suppose que P admet p racines non nulles et deux à deux distinctes : λ_0 , λ_1 , 6. \ldots, λ_{n-1} .
 - a) Déterminer une base de F formée de vecteurs propres de q.
 - b) En déduire que, si u est élément de F, il existe des constantes complexes k_0, k_1 , ..., k_{n-1} telles que :

$$\forall n \in \mathbb{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + \ldots + k_{p-1} \lambda_{p-1}^n.$$

Exemple: (On revient à la notation usuelle u_n) 7.

Soit a, b et c trois réels distincts.

Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abcu_n.$$