D'APRÈS EDHEC 1998

- 1. Question préliminaire : Si la série de terme général x_n converge, alors $\lim_{n\to +\infty} x_n = 0$. Donc $\exists \mathbb{N} \in \mathbb{N}, \ \forall n \geqslant \mathbb{N}, \ 0 \leqslant x_n \leqslant 1, \ \text{donc} \ 0 \leqslant x_n^2 \leqslant x_n$. La règle de comparaison des séries à termes positifs permet de conclure que la série de terme général x_n^2 .
- 2. ch est de classe \mathbb{C}^{∞} sur \mathbb{R} et est paire. $\forall x \in \mathbb{R}$, $\operatorname{ch}'(x) = \frac{\operatorname{e}^{x} \operatorname{e}^{-x}}{2}$. Pour $x \in]0$; $+\infty[$, $\operatorname{e}^{x} > \operatorname{e}^{-x}$, donc ch est strictement croissante sur \mathbb{R}_{+} . Par parité, ch est strictement décroissante sur \mathbb{R}_{-} . Notons enfin que $\lim_{x \to -\infty} \operatorname{ch}(x) = \lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$ et $\operatorname{ch}(0) = 1$.
- Notons que : $\forall x \in \mathbb{R}$, ch''(x) = ch(x), donc ch''(0) = ch(0) = 1 et ch'(0) = 0. Ce qui conduit au développement limité à l'ordre 2 de ch au voisinage de 0 donné par la formule de Taylor-Young : $ch(x) = 1 + \frac{x^2}{2} + o(x^2).$
- **4.** a) Par une récurrence immédiate, la suite (u_n) est strictement positive. De plus, pour tout n de \mathbb{N} , $\frac{u_{n+1}}{u_n} = \frac{1}{\operatorname{ch}(u_n)} < 1$ car $u_n > 0$ entraîne que $\operatorname{ch}(u_n) > 1$. Donc (u_n) est strictement décroissante.
 - **b)** (u_n) est décroissante minorée (par 0), donc (u_n) est convergente. Soit ℓ sa limite. On a : $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = \ell$ et $u_{n+1} = \frac{u_n}{\operatorname{ch}(u_n)}$, donc $\ell = \frac{\ell}{\operatorname{ch}(\ell)}$ donc $\operatorname{ch}(\ell) = 1$ donc $\ell = 0$. $\lim_{n \to +\infty} u_n = 0$.
- **5.** a) (u_n) étant strictement décroissante, on a : $\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} < 1$, donc (v_n) est strictement négative.
 - **b)** $v_n = \frac{1}{\operatorname{ch}(u_n)} 1$ avec $\lim_{n \to +\infty} \operatorname{ch}(u_n) = \operatorname{ch}(0) = 1$. Donc $v_n = \frac{1}{\operatorname{ch}(u_n)} = \frac{1}{\operatorname{ch}(u_n)}$

c) $\sum_{k=0}^{n-1} \ln(1+v_k) = \sum_{k=0}^{n-1} \ln\left(\frac{u_{k+1}}{u_k}\right) = \sum_{k=0}^{n-1} \ln(u_{k+1}) - \ln(u_k) = \ln(u_n) - \ln(u_0)$ aprés un joyeux téléscopage. Donc, comme $\ln(u_0) = \ln(1) = 0, \sum_{k=0}^{n-1} \ln(1+v_k) = \ln(u_n).$

Puisque $\lim_{n\to+\infty} u_n = 0$, $\lim_{n\to+\infty} \sum_{k=0}^n \ln(1+v_k) = -\infty$ donc la série de terme général $\ln(1+v_n)$ diverge. Or comme $\lim_{n\to+\infty} v_n = 0$, $\ln(1+v_n) \sim v_n$. Comme ces termes généraux sont de signe constant (négatif), la règle des équivalents entraı̂ne que les séries sont de même nature, donc divergentes.

La série de terme général v_n est divergente.

- **6.** a) $v_n = \frac{1}{\operatorname{ch}(u_n)} 1 = \frac{1 \operatorname{ch}(u_n)}{\operatorname{ch}(u_n)}$. Comme $\lim_{n \to +\infty} u_n = 0$, $\operatorname{ch}(u_n) = 1 + \frac{u_n^2}{2} + o\left(\frac{u_n^2}{2}\right) \operatorname{donc} 1 \operatorname{ch}(u_n) = -\frac{u_n^2}{2} + o\left(\frac{u_n^2}{2}\right) \operatorname{et} 1 \operatorname{ch}(u_n) \underset{n \to +\infty}{\sim} -\frac{u_n^2}{2}$. Comme de plus $\operatorname{ch}(u_n) \underset{n \to +\infty}{\sim} 1$, on obtient $v_n \underset{n \to +\infty}{\sim} -\frac{u_n^2}{2}$.
 - b) Par la règle des équivalents (les termes généraux étant de signe constant), les séries $\sum_{n\geqslant 0}-\frac{u_n^2}{2}$ et $\sum_{n\geqslant 0}v_n$ sont de même nature donc divergentes. Par linéarité, la série de terme général u_n^2 est divergente.
 - c) La suite (u_n) est strictement positive. D'aprés le préliminaire, si la série $\sum_{n\geqslant 0} u_n$ convergeait, la série $\sum_{n\geqslant 0} u_n^2$ convergerait. Or ce n'est pas le cas. Donc la série de terme général u_n diverge.

EXERCICE 1. EDHEC 1998

1. a) f est continue et positive sur \mathbb{R} . De plus, f est paire.

$$\int_{0}^{+\infty} f(t) dt = \frac{1}{2} \int_{0}^{+\infty} e^{-t} dt \text{ converge et vaut } \frac{1}{2} \Gamma(1) = \frac{1}{2} 0! = \frac{1}{2}$$
Par parité,
$$\int_{-\infty}^{+\infty} f(t) dt \text{ existe et vaut } 2 \times \frac{1}{2} = 1. \text{ Donc}$$
 f est bien une densité de probabilité.

$$\mathbf{b)} \operatorname{Si} x < 0, \, \operatorname{F}_{\mathbf{Z}}(x) = \int_{-\infty}^{x} \frac{\operatorname{e}^{t}}{2} dt = \lim_{A \to -\infty} \left[\frac{\operatorname{e}^{t}}{2} \right]_{A}^{x} = \frac{\operatorname{e}^{x}}{2}.$$

$$\operatorname{Si} x \geqslant 0, \, \operatorname{F}_{\mathbf{Z}}(x) = \int_{-\infty}^{0} \frac{\operatorname{e}^{t}}{2} dt + \int_{0}^{x} \frac{\operatorname{e}^{-t}}{2} dt = \lim_{A \to -\infty} \left[\frac{\operatorname{e}^{t}}{2} \right]_{A}^{0} + \left[\frac{-\operatorname{e}^{-t}}{2} \right]_{0}^{x} = \frac{1}{2} + \frac{-\operatorname{e}^{-x}}{2} + \frac{1}{2} = 1 - \frac{\operatorname{e}^{-x}}{2}.$$

$$\operatorname{F}_{\mathbf{Z}} : \mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto \begin{cases} \frac{\operatorname{e}^{x}}{2} & \text{si } x \in x < 0 \\ 1 - \frac{\operatorname{e}^{-x}}{2} & \text{sinon} \end{cases}.$$

c) $Z_1(\Omega) = Z_2(\Omega) = \mathbb{R}$ donc $V(\Omega) = \mathbb{R}$. Comme Z_1 et Z_2 sont deux variables à densité indépendantes de densité f, étudions $h: x \mapsto$ $\int_{-\infty}^{+\infty} f(t)f(x-t)dt$. $h(x) = \frac{1}{4}\int_{-\infty}^{+\infty} e^{-|t|}e^{-|x-t|}dt$. Pour évacuer les valeurs absolues, remarquons que : $|t| = t \iff t \ge 0$ et |x - t| = $x - t \iff x \geqslant t$. Si x < 0, $h(x) = \frac{1}{4} \int_{-\infty}^{x} e^{t} e^{-x+t} dt + \frac{1}{4} \int_{-\infty}^{0} e^{t} e^{x-t} dt +$ $\frac{1}{4} \int_{0}^{+\infty} e^{-t} e^{x-t} dt = \frac{e^{-x}}{4} \int_{0}^{x} e^{2t} dt + \frac{e^{x}}{4} \int_{0}^{0} 1 dt + \frac{e^{x}}{4} \int_{0}^{+\infty} e^{-2t} dt =$ $\frac{1}{4} \left(\frac{e^{-x}e^{2x}}{2} - xe^x + \frac{e^x}{2} \right) = \frac{1-x}{4} e^x$ Si $x \ge 0$, $h(x) = \frac{1}{4} \int_{0}^{0} e^{t} e^{-x+t} dt + \frac{1}{4} \int_{0}^{x} e^{-t} e^{-x+t} dt + \frac{1}{4} \int_{0}^{+\infty} e^{-t} e^{x-t} dt$ $= \frac{e^{-x}}{4} \int_{0}^{0} e^{2t} dt + \frac{e^{-x}}{4} \int_{0}^{x} 1 dt + \frac{e^{x}}{4} \int_{0}^{+\infty} e^{-2t} dt$

$$\frac{1}{4} \left(\frac{e^{-x}}{2} + xe^{-x} + \frac{e^{x}e^{-2x}}{2} \right) = \frac{1+x}{4}e^{-x}$$
La fonction h obtenue est continue sur \mathbb{R} , donc
$$f_{V} : \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \frac{1+|x|}{4}e^{-|x|}.$$

2. a) $Y(\Omega) = \mathbb{R}_+ \text{ donc } (-Y)(\Omega) = \mathbb{R}_-. \text{ Pour } x \in \mathbb{R}_-, F_{-Y}(x) = \mathbb{P}(-Y \leq x)$ $(x) = \mathbb{P}(Y \ge -x) = 1 - F_Y(-x) = 1 - (1 - e^{-(-x)}) = e^x$. Par dérivation,

$$F_{-Y}: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \begin{cases} e^x & \text{si } x \in x \leq 0 \\ 1 & \text{sinon} \end{cases} x > 0 \text{ et } f_{-Y}: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{$$

- **b)** $X(\Omega) = Y(\Omega) = \mathbb{R}_+ \text{ donc } Z(\Omega) = \mathbb{R}$. Comme X et -Y sont deux variables à densité indépendantes, étudions $h: x \mapsto \int^{+\infty} f_{X}(t) f_{-Y}(x - t) dt$ $t)dt. h(x) = \int_{-\infty}^{+\infty} e^{-t} f_{-Y}(x-t)dt.$ Si x > t, alors x - t > 0 et $f_{-Y}(x - t) = 0$. Sinon $f_{-Y}(x - t) = e^{x - t}$. Si x < 0, alors x < t et $h(x) = \int_{0}^{+\infty} e^{-t} e^{x-t} dt = e^{x} \int_{0}^{+\infty} e^{-2t} dt = \frac{e^{x}}{2}$. Si $x \geqslant 0$, alors $h(x) = \int_0^x e^{-t} \times 0 dt + \int_x^{+\infty} e^{-t} e^{x-t} dt =$ $e^x \int_{-\infty}^{+\infty} e^{-2t} dt = \frac{e^x e^{-2x}}{2} = \frac{e^{-x}}{2}$. La fonction h obtenue est continue sur \mathbb{R} , et s'écrit $h(x) = \frac{e^{-|x|}}{2}$. Z suit la loi exponentielle bilatérale.
- c) Par linéarité, $\mathbb{E}(Z) = \mathbb{E}(X) \mathbb{E}(Y) = 1 1 = 0$, eh oui!
- d) $Z(\Omega) = \mathbb{R}$ donc $T(\Omega) = \mathbb{R}_+$. Pour $x \in \mathbb{R}_+$, $F_T(x) = \mathbb{P}(|Z| \leqslant x) =$ $\mathbb{P}(-x \le Z \le x) = F_Z(x) - F_Z(-x) = 1 - \frac{e^{-x}}{2} - \frac{e^{-x}}{2} = 1 - e^{-x}$ (on a déterminé F_Z en 1.b)). $\mid T$ suit une loi exponentielle de paramètre 1.

EXERCICE 2. EDHEC 1998

Partie I. Préliminaire.

- 1. a) On calcule $f_k^{(j)}$ à l'aide de la formule de Leibniz. $f_k^{(j)}(x) = \sum_{i=0}^{j} {j \choose i} (e^{-x})^{(i)} (x^k)^{(j-i)}$. Or $(e^{-x})^{(i)} = (-1)^i (e^{-x})$, et $(x^k)^{(j-i)} = \frac{k!}{(k-(j-i))!} x^{k-(j-i)}$. Donc $f_k^{(j)}(x) = \sum_{i=0}^{j} {j \choose i} (-1)^i \frac{k!}{(k-j+i)!} e^{-x} x^{k-j+i}.$
 - b) Pour $0 \leqslant i \leqslant j \leqslant k-1$, $k-j+i \geqslant 1$ donc tous les termes x^{k-j+i} s'annule lorsque x=0. De plus, $\lim_{x\to +\infty} \mathrm{e}^{-x} x^{k-j+i} = 0$. Donc pour $j \in [0; k-1]$, $f_k^{(j)}(0) = 0$ et $\lim_{x\to +\infty} f_k^{(j)}(x) = 0$.

Partie II. Étude de φ .

- 1. a) $\varphi(aP_1 + P_2) = (X 1)(aP_1 + P_2)' X(aP_1 + P_2) = a((X 1)P_1 XP_1') + (X 2)P_2 XP_2 = a\varphi(P_1) + \varphi(P_2)$. deg XP' \leq deg P et deg XP'' \leq deg P 1. Donc φ est un endomorphisme de $\mathbb{R}_n[X]$.
 - $\mathbf{b}) \varphi(\mathbf{X}^j) = j\mathbf{X}^j j^2\mathbf{X}^{j-1}.$

$$\mathbf{c}) \ \mathbf{M} = \begin{pmatrix} 0 & -1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -4 & \ddots & & \vdots \\ 0 & 0 & 2 & -9 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & n-1 & -n^2 \\ 0 & \dots & \dots & 0 & n \end{pmatrix}.$$

d) M est triangulaire, $\operatorname{Sp}(M) = \{0; 1; \dots; n-1; n\}$. M a n+1 valeurs propres distinctes et $\dim \mathbb{R}_n[X] = n+1$, donc φ est diagonalisable.

- **2.** a) $\varphi(L_k) = \sum_{i=0}^p a_i \varphi(X^i) = \sum_{i=0}^p a_i (iX^i i^2 X^{i-1}) = kL_k = k \sum_{i=0}^p a_i X^i$. Les coefficients dominants de ces sommes étant égaux, on a $pa_p = ka_p$. Avec $a_p = 1$, il vient p = k.
 - **b)** $\varphi(1) = 0 = 0 \times 1 \text{ donc } L_0 = 1.$

c)
$$\varphi(L_k) = kL_k \iff \sum_{i=0}^k a_i (iX^i - i^2X^{i-1}) = k\sum_{i=0}^k a_i X^i \iff \sum_{i=0}^k a_i iX^i - \sum_{i=0}^{k-1} a_{i+1} (i+1)^2 X^i) = \sum_{i=0}^k a_i kX^i \iff \begin{cases} ka_k = ka_k \\ (k-1)a_{k-1} - k^2 a_k = ka_{k-1} \\ \vdots & \vdots & \vdots \end{cases} \\ ka_i = ka_j = ka_0 \end{cases}$$

$$\begin{cases} a_k = 1 & (\text{car } L_k \text{ est unitaire.}) \\ a_{k-1} = -k^2 a_k = ka_k = ka_j = ka_j$$

d) On alors démontre par une récurrence descendante sur $i \in [0; k]$ que

$$a_i = (-1)^{k-i}(k-i)! {k \choose i}^2.$$

Plus précisément, on montre la propriété pour i=k, puis on la suppose vraie à un rang quelconque i de [1;k] pour démontrer qu'elle est alors vraie au rang i-1. Il s'agit d'une récurrence descendante finie.

Essayez, ça marche tout seul!

3.
$$L_k(x) = \sum_{i=0}^k a_i x^i = \sum_{i=0}^k (-1)^{k-i} (k-i)! \binom{k}{i}^2 x^i. \text{ D'autre part,}$$

$$(-1)^k e^x f_k^{(k)}(x) = \sum_{i=0}^k \binom{k}{i} (-1)^{k+i} \frac{k!}{i!} x^i \text{ d'aprés la partie I. Comme}$$

$$(-1)^{k-i} = (-1)^{k+i} \text{ et } \binom{k}{i} (k-i)! = \frac{k!}{i!}, \text{ ces deux expressions sont}$$
égales.

$$\forall k \in [0; n], \forall x \in \mathbb{R} \quad L_k(x) = (-1)^k e^x f_k^{(k)}(x).$$

Partie III. Étude des racines de L_n .

1.
$$\int_0^{+\infty} x^k e^{-x} dx \text{ converge vaut } \Gamma(k+1) = k!.$$

- **2.** a) Soit i un entier naturel et a et b deux réels. Par récurrence sur $k \in [0; n]$, on démontre, à l'aide d'intégrations par parties, que $\int_a^b t^i f_n^{(n)}(t) dt = \left[\sum_{j=0}^{k-1} (-1)^j \left(t^i\right)^{(j)} f_n^{(n-j-1)}(t)\right]_a^b + (-1)^k \int_a^b \left(t^i\right)^{(k)} f_n^{(n-k)}(t) dt$. Ce qui donne le résultat pour k=n.
 - b) On a, pour $j \in [0; n-1]$, $n-j-1 \in [0; n-1]$. Par la partie I, on sait que $f_n^{(n-j-1)}(0) = 0$ et $\lim_{b \to +\infty} f_n^{(n-j-1)}(b) = 0$. En prenant a = 0 et b tendant vers $+\infty$ dans la relation précédente, on obtient : $\int_0^{+\infty} t^i f_n^{(n)}(t) dt = (-1)^n \int_0^{+\infty} (t^i)^{(n)} f_n(t) dt,$ or n > i donc $(t^i)^{(n)} = 0$: la dernière intégrale est nulle. Enfin $t^i L_n(t) e^{-t} = t^i (-1)^n e^t f_n^{(n)}(t) e^{-t} = (-1)^n t^i f_n^{(n)}(t)$, donc

$$\forall i \in [0; n-1], \int_0^{+\infty} t^i L_n(t) e^{-t} dt = 0.$$

c) Tout P de $\mathbb{R}_{n-1}[X]$ est combinaison linéaire des X^i ($0 \le i \le n-1$), donc par linéarité de l'intégrale,

$$\forall P \in \mathbb{R}_{n-1}[X], \int_0^{+\infty} P(t)L_n(t)e^{-t}dt = 0.$$

- On raisonne sur \mathbb{R}_+ , donc uniquement avec les racines positives. Les racines de RL_n sont les racines de L_n . Les racines d'ordre pair de L_n ne sont pas racines de R donc sont encore des racines d'ordre pair dans RL_n . Les racines d'ordre impair de L sont aussi racines d'ordre impair de R donc sont encore des racines d'ordre pair dans RL_n . RL_n n'a donc que des racines d'ordre pair, il est donc de signe constant, égal au signe de sont coefficient dominant, qui vaut 1, donc positif. RL_n est positif sur \mathbb{R}_+ .
- **4.** a) $\int_{0}^{+\infty} R(t)L_{n}(t)e^{-t}dt = 0$ est une conséquence de 2.c) puisque $R \in \mathbb{R}_{n-1}[X]$ car $p = \deg R < n$.
 - b) L'intégrale $\int_0^{+\infty} R(t)L_n(t)e^{-t}dt$ est l'intégrale d'une fonction continue positive sur \mathbb{R}_+ . Comme cette intégrale est nulle, $t \mapsto R(t)L_n(t)e^{-t}$ est la fonction nulle. Comme deg $L_n = n$, L_n ne s'annule qu'au plus n fois, donc R a une infinité de racines. Donc RL_n est le polynôme nul.
- **5.** a) Par définition, R n'est pas nul. Donc p < n est impossible. Donc p = n.
 - b) Puisque p = n, deg R = n, R admet n racines distinctes positives qui par définition de R sont n racines distinctes positives de L_n . Comme deg $L_n = n$, L_n a n racines réelles distinctes et toutes positives.