- Partie I. Promenade barisienne. Pour $k \in [0; 3]$, $f(X^k) = X.X^k \frac{X(X-1)}{3}kX^{k-1} = \left(1 \frac{k}{3}\right)X^{k+1} + \frac{k}{3}X^k$. 1.
- Soit $(P, Q) \in E^2$ et $a \in \mathbb{R}$. 2. $f(aP+Q) = X((aP+Q)(X)) + \frac{X(X-1)}{3}(aP+Q)'(X) = X(aP(X)+Q(X)) + \frac{X(X-1)}{3}(aP'(X)+Q'(X)) = af(P)+f(Q).$ Done f est une application linearized Donc f est une application linéaire
 - On remarque, d'après la première question, que si $k \in [0; 2]$, $\deg f(X^k) = k+1$ et si $k=3, f(X^k) = X^k$. Ainsi par linéarité, pour tout P de E, $\deg f(P) \leq 3$.

 $\textbf{D\acute{e}taillons}: f(a\mathbf{X}^3 + b\mathbf{X}^2 + c\mathbf{X} + d) \stackrel{\text{lin.}}{=} af(\mathbf{X}^3) + bf(\mathbf{X}^2) + cf(\mathbf{X}) + df(1) \in \mathbb{R}_3[\mathbf{X}] \text{ d'après } 1.$

- f est un endomorphisme de $E = \mathbb{R}_3[X]$.
- $\text{D'après 1)}, \quad \mathbf{M} = \mathcal{M}_{\mathcal{B}}(f) = \left(\begin{array}{cccc} 1 & 1/3 & 0 & 0 \\ 0 & 2/3 & 2/3 & 0 \\ 0 & 0 & 1/3 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right).$ 3.
- M est triangulaire, donc ses valeurs propres sont coefficients diagonaux. Comme M représente f, 4.
 - « triangulaire n'entraîne pas diagonalisable! » : par exemple, $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ n'est pas diagonalisable puisque $Sp(A) = \{1\} \text{ et } dim(E_1) = 2 - rg(A - I_2) = 1 < 2...$

$$Sp(A) = \{1\} \text{ et } dim(E_1) = 2 - rg(A - I_2) = 1 < 2.$$

 $Sp(f) = Sp(M) = \{0; 1/3; 2/3; 1\}.$

 \overline{f} est un endomorphisme de E ayant 4 valeurs propres distinctes, et dim E = 4, donc f est diagonalisable.

- $\overline{\text{Les sous-espaces propres}}$ de f sont nécessairement de dimension 1. **5**.
 - Comme $f(X^3) = X^3$, $E_1 = Vect(X^3)$.
 - Soit $P(X) = aX^3 + bX^2 + cX + d$. P est représenté par $U = \mathcal{M}_{\mathcal{B}}(P) = \begin{pmatrix} c \\ b \\ c \\ d \end{pmatrix}$.

Alors:
$$P \in \mathbb{E}_{\lambda} \Leftrightarrow f(P) = \lambda P \Leftrightarrow MU = \lambda U \Leftrightarrow (M - \lambda I_4)U = 0 \Leftrightarrow \begin{cases} (1 - \lambda)a + \frac{1}{3}b &= 0\\ (\frac{2}{3} - \lambda)b + \frac{2}{3}c &= 0\\ (\frac{1}{3} - \lambda)c + d &= 0\\ -\lambda d &= 0 \end{cases}$$

On obtient quasi-instantanément :

$$\text{pour } \lambda = 2/3, \boxed{E_{2/3} = \text{Vect}(X^3 - X^2)}$$

For pour
$$\lambda = 1/3$$
, $\boxed{E_{1/3} = \operatorname{Vect}(X^3 - 2X^2 + X)}$

pour
$$\lambda = 0$$
, $E_0 = \text{Vect}(X^3 - 3X^2 + 3X - 1)$

On demande les sous-espaces propres de f, pas de M! Ce sont des espaces de polynômes, engendrés par des polynômes et non par des colonnes.

6. Si
$$\mathcal{B}' = (X^3, X^3 - X^2, X^3 - 2X^2 + X, X^3 - 3X^2 + 3X - 1),$$

$$P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

7.

 $P^2 = I_4$ donc $P \times P = I_4$. Ainsi P est inversible et $P^{-1} = P$. Par le théorème de changement de base, $D = PMP = P^{-1}MP = \mathcal{M}_{\mathcal{B}'}(f)$. Or $\underline{\mathcal{B}'}$ est une base formée de vecteurs

propres de f associés respectivement aux valeurs propres 1, 2/3, 1/3 et 0. Donc $D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \end{pmatrix}$

 $M = PDP^{-1}$ donc $M^m = PD^mP^{-1}$ et puisque $P^{-1} = P$, $M^m = PD^mP$. 8.

Pas de calculs inutiles : l'énoncé dit d'exprimer M^m à l'aide de P et D^m, mais ne demande pas le calcul explicite de tous les coefficients.

Partie II. Escapade parisienne.

- 1. Idem partie I.
- Idem partie I. $\operatorname{Sp}(f) = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\} = \left\{\frac{k}{n}, k \in [0; n]\right\}.$ Écrire la matrice M de f dans la base $\mathcal{B} = (\mathbf{X}^n, \mathbf{X}^{n-1}, \dots, \mathbf{X}, 1).$ 2.
- a) On sait que, si $k \leq n-1$, alors $\deg(f(X^k)) = k+1$. 3. Par linéarité, si $deg(P) \in [0; n-1]$, alors deg(f(P)) = deg(P) + 1
 - b) Si P est un vecteur propre associé à λ avec $\lambda \neq 0$, $f(P) = \lambda P$ donc $\deg(f(P)) = \deg(P)$, ce qui d'après la question précdente n'est possible que si deg(P) = n.
 - Si f(P) = 0, en observant le système MU = 0 (où $U = \mathcal{M}_{\mathcal{B}}(P)$), on constate que si le premier coefficient de U est nul, alors tous les coefficients suivants le sont, et P est nul. Autrement dit, si deg P < n, alors P n'est pas un vecteur propre associé à 0.
 - Conclusion : les vecteurs propres de f sont tous de degré n.
 - c) Les vecteurs propres de f sont tous de degré n. Soit P un vecteur propre associé à une valeur propre λ . Posons $P(X) = X^p(X - 1)^q R(X)$ avec $R(0) \neq 0$ et $R(1) \neq 0$. $\lambda P = f(P) \Rightarrow$

$$\lambda P = X^{p+1}(X-1)^q R(X) - \frac{X(X-1)}{n} \left(p X^{p-1}(X-1)^q R(X) + q X^p (X-1)^{q-1} R(X) + X^p (X-1)^q R'(X) \right) \Rightarrow$$

$$\lambda P = X^p (X-1) \left(X R(X) - \frac{p}{n} (X-1) R(X) - \frac{q}{n} X R(X) - \frac{X(X-1)}{n} R'(X) \right).$$
Par unicité du quotient dans la division euclidienne,

$$\lambda R = XR(X) - \frac{p}{n}(X - 1)R(X) - \frac{q}{n}XR(X) - \frac{X(X - 1)}{n}R'(X).$$

The first variation of the transfer division extractions,
$$\lambda \mathbf{R} = \mathbf{X}\mathbf{R}(\mathbf{X}) - \frac{p}{n}(\mathbf{X} - 1)\mathbf{R}(\mathbf{X}) - \frac{q}{n}\mathbf{X}\mathbf{R}(\mathbf{X}) - \frac{\mathbf{X}(\mathbf{X} - 1)}{n}\mathbf{R}'(\mathbf{X}).$$
 En prenant cette relation pour $\mathbf{X} = 0$ puis $\mathbf{X} = 1$,
$$\lambda \mathbf{R}(0) = \frac{p}{n}\mathbf{R}(0) \text{ et } \lambda \mathbf{R}(1) = \left(1 - \frac{q}{n}\right)\mathbf{R}(0), \text{ et comme } \mathbf{R}(0)\mathbf{R}(1) \neq 0, \ \lambda = \frac{p}{n} = 1 - \frac{q}{n}.$$
 Ainsi, $p + q = n$, donc \mathbf{R} est constant et $\mathbf{P} = \mathbf{X}^p(\mathbf{X} - 1)^{n-p}$.

Les vecteurs propres de f n'admettent que 0 et 1 comme racines.

- d) D'après ce qui précède, $P = X^p(X-1)^{n-p}$ est un vecteur propre de f associé à la valeur propre $\frac{p}{n}$. Les sous-espaces propres de f sont les $E_{p/n} = \text{Vect}(X^p(X-1)^{n-p})$ pour $p \in [0; n]$.
- a) $X^k(X-1)^{n-k} = X^k \sum_{i=0}^{n-k} \binom{n-k}{i} (-1)^i X^{n-k-i} = \sum_{i=0}^{n-k} \binom{n-k}{i} (-1)^i X^{n-i}$.

En numérotant les lignes et colonnes de 0 à n, la matrice Π est Π alors $\pi_{i,j} = \left((-1)^i \binom{j}{i} \right)$.

b) Calculons les coefficients de Π^2 .

$$\sum_{k=0}^{n} \pi_{i,k} \pi_{k,j} = \sum_{k=0}^{n} (-1)^{i+k} \binom{k}{i} \binom{j}{k}.$$
 Cette somme est nulle si $i > j$ puisque dans chaque terme, l'un (au moins) des binomiaux est nul

$$\sum_{k=0}^{n} \pi_{i,k} \pi_{k,j} = \sum_{k=i}^{j} (-1)^{i+k} \binom{k}{i} \binom{j}{k} = \frac{j!}{i!} (-1)^{i} \sum_{k=i}^{j} \frac{(-1)^{k}}{(k-i)!(j-k)!} = \frac{j!}{i!} \sum_{k=0}^{j-i} \frac{(-1)^{k}}{k!(j-i-k)!}$$

$$= \frac{j!}{i!(j-i)!} \sum_{k=0}^{j-i} \binom{j-i}{k} (-1)^{k} = \frac{j!}{i!(j-i)!} (1-1)^{j-i} = \binom{j}{i} 0^{j-i} = \delta_{i}^{j} \dots \text{ car } 0^{0} = 1$$

c) $\Pi M \Pi = \Pi^{-1} M \Pi$ est la matrice représentative de f dans la base \mathcal{B}' formée de vecteurs propres associés respectivement

Donc $\Pi M \Pi$ est la matrice diagonale de $\mathcal{M}_{n+1}(\mathbb{R})$ portant $1, \frac{n-1}{n}, \dots, \frac{1}{n}, 0$ dans cet ordre sur sa diagonale.

2 Fichier : dm1607_cor 29 Frimaire 225 à 15:45

^{(1).} Rappelons que $\binom{j}{i} = 0$ si i > j.