EXERCICE 1.

Un calcul préliminaire

- 1. Un calcul préliminaire
 - a) $j: t \mapsto \frac{1}{\sqrt{t(t+1)}}$ est continue et positive sur] $0; +\infty$ [.
 - $j(t) \sim \int_{t\to 0}^{1} \frac{\mathrm{d}t}{\sqrt{t}}$ et $\int_{0}^{1} \frac{\mathrm{d}t}{t^{1/2}}$ est une intégrale de Riemann convergente, puisque 1/2 < 1.
 - $j(t) \sim \frac{1}{t \to +\infty} \frac{1}{t^{3/2}}$ et $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{3/2}}$ est une intégrale de Riemann convergente, puisque 3/2 > 1.

Le critère des équivalents pour les fonctions positives, appliqué en 0 et en $+\infty$ justifie que

l'intégrale doublement impropre I converge.

b) i. $u: t \mapsto \sqrt{t}$ est de classe \mathcal{C}^1 et strictement croissante sur $]0; +\infty[$, donc le changement de variable proposé

est légitime. On obtient alors $I = \int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t}(t+1)} = \int_0^{+\infty} \frac{2u\mathrm{d}u}{u(u^2+1)}$

$$\begin{split} &\mathrm{I} = 2\int_{0}^{+\infty} \frac{\mathrm{d}u}{u^2+1} = 2\big(\lim_{\mathrm{A}\to +\infty} \arctan(\mathrm{A}) - \arctan(0)\big) = 2\times \frac{\pi}{2} = \pi \\ &\mathrm{ii.}\ t: u\mapsto \tan^2 u \text{ est de classe } \mathfrak{C}^1 \text{ et strictement croissante sur }]\,0\,;\,\pi/2\,[,\,\mathrm{donc\ le\ changement\ de\ variable} \end{split}$$

proposé est légitime. On obtient alors

 $I = \int_0^{+\infty} \frac{dt}{\sqrt{t(t+1)}} = \int_0^{\pi/2} \frac{2\tan u(\tan^2 u + 1)du}{\tan u(\tan^2 u + 1)} = \int_0^{\pi/2} 2du = 2\frac{\pi}{2} = \pi$

2.

 $t \mapsto \frac{1}{t^x(t+1)}$ est continue et positive sur] 0; $+\infty$ [.

 $\frac{1}{t^x(t+1)} \sim \frac{1}{t^x}$ et l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}t}{t^x}$ converge si, et seulement si, x < 1. Par le critère des

équivalents pour des fonctions positives, $\int_0^1 \frac{\mathrm{d}t}{t^x(t+1)}$ converge si, et seulement si, x < 1.

 $\frac{1}{t^x(t+1)} \underset{t \to +\infty}{\sim} \frac{1}{t^{x+1}} \text{ et l'intégrale de Riemann } \int_1^{+\infty} \frac{\mathrm{d}t}{t^{x+1}} \text{ converge si, et seulement si, } x+1 > 1 \text{ (i.e. }$

x > 0). Par le critère des équivalents pour des fonctions positives, $\int_0^1 \frac{\mathrm{d}t}{t^x(t+1)}$ converge si, et seulement $\sin, x > 0.$

Par définition de la convergence d'une intégrale doublement impropre,

l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}t}{t^x(t+1)}$ converge si, et seulement si, $x \in \,]\,0\,;\,1\,[.$

- 3. Symétrie
 - a) $u:t\mapsto 1/t$ étant de classe \mathcal{C}^1 et strictement décroissante sur $]0;+\infty[$, le changement de variable indiqué

est licite. Soit $x \in]0; 1[$. $g(x) \stackrel{u=1/t}{=} \int_{+\infty}^{0} \frac{(-1/u^2) du}{u^{-x}(1+1/u)} = \int_{0}^{+\infty} \frac{du}{u^{1-x}(u+1)} = g(1-x)$

b) Soit M(x,y) un point quelconque. Son symétrique par rapport à la droite verticale d'équation x=1/2 est M'(1-x,y) (Faire un dessin pour s'en convaincre!) On a alors :

> $M \in \mathcal{C}_g \Leftrightarrow y = g(x) \Leftrightarrow y = g(1-x) \Leftrightarrow M' \in \mathcal{C}_g.$ La droite verticale d'équation x = 1/2 est axe de symétrie de la courbe \mathcal{C}_q .

4. *Équivalents de g en 0 et en 1*

Dans cette question, x désigne un réel de l'intervalle [0; 1/2].

a) En coupant par la relation de Chasles en 1 et par linéarité sur $[1; +\infty]$,

$$g(x) - \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x+1}} = \int_{0}^{1} \frac{\mathrm{d}t}{t^{x}(t+1)} + \int_{1}^{+\infty} \frac{t - (t+1)}{t^{x+1}(t+1)} \mathrm{d}t, \text{ d'où}$$

$$g(x) = \int_0^1 \frac{dt}{t^x(t+1)} - \int_1^{+\infty} \frac{dt}{t^{x+1}(t+1)}.$$

 $g(x) = \int_0^1 \frac{\mathrm{d}t}{t^x(t+1)} - \int_1^{+\infty} \frac{\mathrm{d}t}{t^{x+1}(t+1)}.$ $\mathbf{b}) \, \forall t \in]\, 0\, ;\, 1\,]\, ,0 \leqslant \frac{1}{t^x(t+1)} \leqslant \frac{1}{t^x} \leqslant \frac{1}{\sqrt{t}} \text{ car } 0 < x \leqslant \frac{1}{2} \text{ entraı̂ne } t^x \geqslant t. \text{ Par croissance de l'intégrale,}$

$$\boxed{0 \leqslant \int_0^1 \frac{\mathrm{d}t}{t^x(t+1)} \leqslant \int_0^1 \frac{\mathrm{d}t}{\sqrt{t}}.}$$

c) $\forall t \in [1; +\infty[, 0 \le \frac{1}{t^x(t+1)} \le \frac{1}{t^{x+2}} \le \frac{1}{t^2} \text{ car } 0 < x \text{ entraı̂ne } t^{x+2} \ge t^x.$ Par croissance de l'intégrale,

$$0 \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x+1}(t+1)} \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{2}}.$$

d) Commençons par calculer les deux intégrales majorantes :

$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{t}} = \lim_{A \to 0} \left[2\sqrt{t} \right]_A^1 = 2$$

$$\int_1^{+\infty} \frac{\mathrm{d}t}{t^2} = \lim_{A \to +\infty} \left[\frac{-1}{t} \right]_1^A = 1$$
Observons que :
$$\int_1^{+\infty} \frac{\mathrm{d}t}{t^{x+1}} = \lim_{A \to +\infty} \left[\frac{1}{-xt^x} \right]_1^A = \frac{1}{x}$$

L'inégalité triangulaire dans 11.a) de

$$\left| g(x) - \int_1^{+\infty} \frac{\mathrm{d}t}{t^{x+1}} \right| \le \left| \int_0^1 \frac{\mathrm{d}t}{t^x(t+1)} \right| + \left| \int_1^{+\infty} \frac{\mathrm{d}t}{t^{x+1}(t+1)} \right|$$

Et en remplaçant les intégrales par leur valeur,

$$\left| \left| g(x) - \frac{1}{x} \right| \leqslant 3.$$

e) En divisant l'inégalité par 1/x pour x > 0, on a :

$$\forall x \in]0; 1/2], \qquad 0 \leqslant \left| \frac{g(x)}{1/x} - 1 \right| \leqslant 3x.$$

Et comme $\lim_{x\to 0} 3x=0$, par encadrement : $\lim_{x\to 0} \frac{g(x)}{1/x}=1$, autrement dit $g(x) \underset{x\to 0}{\sim} \frac{1}{x}.$

$$g(x) \underset{x \to 0}{\sim} \frac{1}{x}.$$

f) En utilisant la symétrie de 3.b), $\frac{g(x)}{1/(1-x)} = \frac{g(1-x)}{1/(1-x)} \xrightarrow[x \to 1]{} 1 \text{ d'après 11.e}.$

$$g(x) \underset{x \to 1}{\sim} \frac{1}{1 - x}.$$

5. Variations de g

a) Soit x dans]0;1[.

Le changement de variable est identique à celui pratiqué en 10.a) et donne $\int_0^1 \frac{\mathrm{d}t}{t^x(t+1)} \stackrel{u=1/t}{=} \int_1^{+\infty} \frac{\mathrm{d}u}{u^{1-x}(u+1)} =$

$$\begin{split} &\int_{1}^{+\infty} \frac{t^{x}}{t(t+1)} \mathrm{d}t. \\ &\text{Comme} \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}(t+1)} = \int_{1}^{+\infty} \frac{t^{1-x}}{t(t+1)} \mathrm{d}t, \text{ par la relation de Chasles}: \\ &g(x) = \int_{1}^{+\infty} \frac{t^{x}}{t(t+1)} \mathrm{d}t + \int_{1}^{+\infty} \frac{t^{1-x}}{t(t+1)} \mathrm{d}t, \text{ et par linéarité}: \\ &g(x) = \int_{1}^{+\infty} \frac{t^{x} + t^{1-x}}{t(t+1)} \mathrm{d}t. \end{split}$$

b) En écrivant :
$$\forall x \in]0; 1[, h(x) = e^{x \ln t} + e^{(1-x) \ln t}, \text{ on a immédiatement}$$
 $\forall x \in]0; 1[, h'(x) = \ln(t)e^{x \ln t} - \ln(t)e^{(1-x) \ln t} = \ln(t)(t^x - t^{1-x}).$

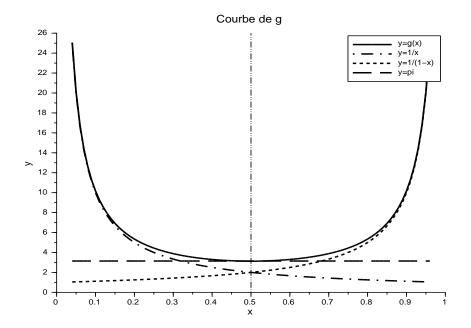
Comme t > 1, $\ln(t) > 0$ et h'(x) est du signe de $t^x - t^{1-x}$. Ainsi : $h'(x) > 0 \Leftrightarrow t^x > t^{1-x} \Leftrightarrow x \ln(t) > (1-x) \ln(t)$ par stricte croissance de exp,

```
\begin{split} h'(x) > 0 &\Leftrightarrow x > 1 - x \Leftrightarrow x > 1/2 \text{ (toujours puisque } \ln(t) > 0). \\ \text{De même, } h'(x) = 0 &\Leftrightarrow x = 1/2. \\ \hline & h \text{ est strictement décroissante sur } ] \ 0 \ ; \ 1/2 \ ] \text{ et strictement croissante sur } [1/2 \ ; \ 1 \ ]. \end{split}
```

- c) Soit $0 < x < y \le 1/2$. Par la décroissance de $h: \forall t > 1, t^x + t^{1-x} \ge t^y + t^{1-y}$, donc $: \forall t > 1, \frac{t^x + t^{1-x}}{t(t+1)} > \frac{t^y + t^{1-y}}{t(t+1)}$. Par croissance de l'intégrale et puisque l'inégalité est stricte et les fonctions intégrées sont continues, g(x) > g(y). g est strictement décroissante sur]0; 1/2]. On démontre de même que g est strictement croissante sur [1/2; 1[. g est strictement décroissante sur]0; 1/2] et strictement croissante sur [1/2; 1[.
- **6.** Extremums

7.

- a) Les variations de g induisent qu'elle atteint un minimum en 1/2, et uniquement en 1/2. Or $g(1/2) = I = \pi$. Le minimum de g est π , atteint uniquement en 1/2.
- **b)** $g(x) \underset{x\to 0}{\sim} \frac{1}{x}$ induit $\lim_{x\to 0} g(x) = \lim_{x\to 0^+} = +\infty$, donc g n'est pas majorée.



```
function y=g(x)
    if x>.5 then
    y=integrate('(t^x*(t+1))^(-1)','t',0,10000)
    else
     y=integrate('(t^(1-x)*(t+1))^(-1)','t',0,10000)
    end;
endfunction;

x=.04:.01:.96;y=[];for k=x y=[y g(k)];end;
plot2d(x,y);plot2d(x,x^(-1));plot2d(x,(1-x)^(-1));plot2d(x,%pi+0.*x);
xpoly([.5 .5],[0,30]);xtitle('Courbe de g');
legend('y=g(x)','y=1/x','y=1/(1-x)','y=pi');
```

EXERCICE 2.

Préliminaires.

8. $f_0(0) = \int_0^1 1 dt = 1 \text{ et pour } x > 0, f_0(x) = \int_0^1 e^{xt} dt = \frac{e^x - 1}{x}.$ $f_0 \text{ est continue sur }] 0; +\infty [\text{ comme quotient de fonctions continues au dénominateur ne s'annulant pas et l'équivalent classique <math>e^x - 1 \underset{x \to 0}{\sim} x \text{ montre que } \lim_{x \to 0} f_0(x) = 1 = f_0(0). \text{ Donc } f_0 \text{ est de continue sur } \mathbb{R}^+.$

- **9.** a) L'exponentielle est convexe sur \mathbb{R} et y = x + 1 est l'équation de la tangente à sa courbe en 0. Cette tangente étant située sous la courbe par convexité, pour tout u de \mathbb{R} , que $u + 1 \leq e^u$.
 - **b)** Pour tout u de [0; x], il découle de l'inégalité précédente $u^{n+1} + u^n \leqslant u^n e^u \leqslant x^n e^x$. En intégrant sur [0; x], on obtient par croissance de l'intégrale, $\forall x \in]0; +\infty[$, $\frac{x^{n+1}}{n+1} + \frac{x^{n+2}}{n+2} \leqslant G_n(x) \leqslant e^x \frac{x^{n+1}}{n+1}$.
 - c) Pour x > 0, l'encadrement précédent peut s'écrire $\frac{1}{n+1} + \frac{x}{n+2} \leqslant \frac{G_n(x)}{x^{n+1}} \leqslant \frac{e^x}{n+1}$. Minorant et majorant tendant vers $\frac{1}{n+1}$ lorsque x tend vers 0, le théorème des gendarmes (ou de l'encadrement) permet de conclure $\lim_{x\to 0^+} \frac{G_n(x)}{x^{n+1}} = \frac{1}{n+1}$.

A-ÉTUDE DE f_1 À L'AIDE D'UN CALCUL EXPLICITE.

- **10.** a) $f_1(0) = \frac{1}{2}$.
 - **b)** À l'aide d'une intégration par parties, $f_1(x) = \frac{xe^x e^x + 1}{x^2}$ pour x > 0.
- 11. f_1 est de classe \mathbb{C}^{∞} sur \mathbb{R}^{*+} et le développement limité fourni permet d'établir que $\lim_{x\to 0} f_1(x) = \frac{1}{2} = f_1(0)$, donc f_1 est continue sur \mathbb{R}^+ .
- 12. Pour x > 0, $\frac{f_1(x)}{\frac{e^x}{x}} = \frac{\frac{e^x}{x} \frac{e^x 1}{x^2}}{\frac{e^x}{x}} = 1 \frac{1 e^{-x}}{x} \xrightarrow[x \to +\infty]{} 1$. Ainsi $f_1(x) \underset{x \to +\infty}{\sim} \frac{e^x}{x}$.

B-Étude de f_n à l'aide de \mathbf{G}_n .

- **13.** a) $f_n(0) = \frac{1}{n+1}$. b) Par l'aide du changement de variable u = xt, les bornes de l'intégrale deviennent 0 et x, du = xdt et ainsi, x > 0, x >
- **14.** a) G_n étant une primitive d'une fonction de classe \mathbb{C}^{∞} sur \mathbb{R}^+ , G_n est elle-même de classe \mathbb{C}^{∞} sur \mathbb{R}^+ . Le dénominateur de f_n étant lui aussi \mathbb{C}^{∞} et ne s'annulant sur \mathbb{R}^{*+} , f_n est de classe \mathbb{C}^{∞} sur \mathbb{R}^{*+} .
 - b) Ainsi f_n est continue sur \mathbb{R}^{*+} . D'après le préliminaire et II1a), $\lim_{x\to 0} f_n(x) = \lim_{x\to 0} \frac{G_n(x)}{x^{n+1}} = \frac{1}{n+1} = f_n(0)$ donc f_n est continue sur \mathbb{R}^+ .
- **15.** a) Une intégration par parties donne $G_{n+1}(x) = x^{n+1}e^x (n+1)G_n(x)$.
 - b) On peut alors montrer $G_n(x) \underset{x \to +\infty}{\sim} x^n e^x$ à l'aide d'un raisonnement par récurrence sur n.
 - $G_0(x) = e^x 1 \underset{x \to +\infty}{\sim} e^x$: la propriété est vraie pour n = 0.
 - Soit n dans \mathbb{N} . Supposons la propriété vraie au rang n. On a $G_{n+1}(x) = x^{n+1}e^x n + 1G_n(x)$ avec $n + 1G_n(x) \underset{x \to +\infty}{\sim} (n+1)x^ne^x$. Or $(n+1)x^ne^x = \underset{x \to +\infty}{o} \left(x^{n+1}e^x\right)$ donc $x^{n+1}e^x n + 1G_n(x) \underset{x \to +\infty}{\sim} x^{n+1}e^x$. Ainsi $G_{n+1}(x) \underset{x \to +\infty}{\sim} x^{n+1}e^x$: la propriété est héréditaire.
 - Par récurrence sur n, voici démontré $G_n(x) \underset{x \to +\infty}{\sim} x^n e^x$.
- **16.** Alors par 13.b) pour tout n de \mathbb{N} , $f_n(x) \sim \frac{e^x}{x \to +\infty} \frac{e^x}{x}$.

Question d'initiative, indépendante des exercices

17. H est dérivable comme produit de fonctions dérivables et $\forall x \in \mathbb{R}^+, \mathrm{H}'(x) = \mathrm{e}^{-x}(f(x) - \mathrm{F}(x)) \leq 0$. H est décroissante et $\mathrm{H}(0) = 0$ donc H est négative. Mais comme $\mathrm{F} \geq 0$ et $\exp \geq 0$, H est positive. Donc H est nulle.

Or $\forall x \in \mathbb{R}^+, e^{-x} \neq 0$ donc $\forall x \in \mathbb{R}^+, F(x) = 0$. Et comme f = F', f est nulle sur \mathbb{R}^+ . Question subsidiaire : le général Charles DE GAULLE.